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High-Performance PML Algorithms
Zhonghua Wu, Student Member, IEEE, and Jiayuan Fang, Member, IEEE

Abstract-This letter presents a revised finite-difference equa-
tion, applied at perfectly matched layer (PML) interfaces, that
can lead to substantial reduction of numerical reflection from
PML absorbers. The properties of the reflection coefficient of
PML absorbers implemented with the revised finite-difference
equation are studied. The effectiveness of the revised finite-
difference equation is verified by numerical tests.

I. INTRODUCTION

THE PERFECTLY matched layer (PML) boundary condi-
tion, since its introduction, has received wide acceptance

[1]. It has been found that PML is robust to implement and

very effective in numerically absorbing outgoing waves. The

search for better absorbing boundary conditions, however,

has never ended. Recent progresses include the extension

of PML to albsorb evanescent waves and to be applicable
for terrninatin,g lossy media [2], [3]. This letter explores the
optimum numerical implementation of PML to minimize the
numerical reflection.

After numerical discretization of differential equations, the
reflection at PML interfaces is no longer zero as it should be in
the continuous space [4], [5]. A compromise has to be made
on selecting the conductivity profile of a PML absorber. If
the conductivity is too small, fields entered into the PML are
not sufficiently attenuated and a large reflection is generated at
the electric wall terminating the PML absorber and propagates

back into the computation domain. If the conductivity of the
PML is too large, reflection from medium interfaces becomes
significant, which may also end up with a large reflection.

In the finite-difference equation at an interface of two PML
media, the mi~terial parameters are commonly chosen to be

the average of those on two sides of the interface. This letter
presents a revised finite-difference equation at PML interfaces.

It is found that numerical reflections of PML absorbers with
the revised finite-difference algorithm can be much smaller
than those wirh the original algorithm.

II. DERIVATIONOF THE REVISED
FINITE-DIFFERENCEALGORITHM

For the ease of illustration, the derivation is shown for the
two-dimensional (2-D) fields of Ex, Ev, and II. components.
Assume a uniform PML (c, p, al., o~z ), medium 1, in the

)region x < 0 and another uniform PML (c, P, mzz, a~z ,

medium 2, in the region z > 0. The interface at z =
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O coincides with the electric nodes of Ev. The difference
equation for Ev at the interface can be expressed as

En+llz(i,j + 1/2) = I?E;-1i2(i, j + 1/2)
Y

+ C[fr:(i + l/2, j + 1/2)

- H$(i – l/2, j + 1/2)] (1)

where B and C are colsfficients and can be expressed as

where ; and 6. in (2) are the material parameters to be
determined at the interface. Typically ; is chosen as c and
6Z is chosen to be (alz + 02Z)/2 [1]–[2].

With the procedure discussed in [5], the numerical reflection

coefficient at the interface can be expressed as (3), shown at
the bottom of the next page, where Z is defined as Ey /H.
for a plane wave propagating in the +% direction and can be
derived as

(sin(klZAh/2))/Ah

z = (c/At) sin(wAt/2) - j(olZ/Z!) cos(tiAt/2)

(sin(k2XAh/2))/Ah

(e/At) sin(wAt/2) - j(02Z/2) cos(wAt/2)” ‘4)

The reflection coefficient at the interface for an incident
wave coming from medium 2 can be similarly found as (5),

also shown at the bottom of the next page.
Next, let us try to determine the values of { and 8Z

to minimize the reflection coefficient R, in (3). From

cos(klz Ah/2) = ~ – sin2(k1. Ah/2) and (4), it can be

found that

cos(klZAh/2) N ~1 + (ZAholz/2)2

(Zfflh)zcalz
+ ‘jW (6)

4~~ZAhfflz/2)2 “

Substitute (6) and the corresponding expression for
Cos(kzz Ah/2) into the numerator of (3) and let the constant
term and the jw term in the numerator of (3) be zero. Then,
we can get

T--/(&)’’+(y)rJlz + (72Z
r?. =

(7)

(8)
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Note that when ~ and 6Z are chosen as (7) and (8), R, #
–R:. It will be shown that R. is significantly reduced while
R: is slightly increased, and the total reflection of a PML
absorber can be substantially reduced with the selection of i?
and 60 as (7) and (8).

With the same procedure, it can be found that when the
interface coincides with the magnetic node Hz, the magnetic
conductivity 6: and the permeability ~ should be chosen as
follows to have the constant and the jw terms in the numerator
of the reflection coefficient Rh at the interface be zero

(9)

(10)

The term Z can be approximated as q cos 0, where 6’is the
incident angle. One can select a particular value of @to have

the PML absorber most effective at that particular incident
angle. It will be shown that, by simply choosing Z be q in
(7) to (10), the PML absorber is best for the normal incidence
but is also generally much better than the original algorithm
for other incident angles.

It is apparent that the revised finite-difference equation at
PML interfaces, with the material parameters chosen as in
(7)-(10), needs no more computer resources than the original
scheme.

III. NUMERICAL TESTS

The parameters used for the following numerical tests are:
Ax = Ay = Ah = 1 mm and At = 0.5Ah@. The
parameter 6’in the revised finite-difference equation is chosen
to be zero unless otherwise stated.

Fig. 1 shows the numerical reflection coefficients R. and R;

for a single interface and at the normal incident angle, with the

original and the revised finite-difference implementations. The
single interface is of the free space on one side and an uniform
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Fig. 1. Numerical reflection coefficients for a single interface with the
original and the revised finite-difference equations.

PML of OZ = 1 S/m on the other side. With the original finite-
difference scheme, the magnitude of R. and R: are the same.
With the revised finite-difference scheme, R. is reduced by a
few orders of magnitude and R: is slightly increased.

Fig. 2 is the total reflection coefficients of a four-cell
parabolic conductivity profile PML absorber, at the normal in-

cident angle, with the original and the revised finite-difference
implementations. The theoretical reflection coefficient of the
absorber, by ignoring the numerical reflection at media inter-
faces, is 10–7. It can be seen that the numerical reflection is
substantially reduced with the revised finite-difference scheme.

Fig. 3 shows the numerical reflection versus the theoretical
reflection at the normal incident angle and at the frequency
~ = 1 GHz, which corresponds to ~ = 300 Ah, for a

four-cell PML absorber of different conductivity profiles. The
conductivity profile of PML is expressed as OZ = o~ (Z/6)m
and the theoretical reflection coefficient Rth relates to the
coefficient v~ and the exponent n by

am = –(n + 1)/(26q)ln &h. (11)

As can be seen from Fig. 3, when Rth is relatively large
(or o~ is small), the reflection of the original and the revised
schemes are about the same. This is because, for these cases,
the main reflection from the PML absorber is actually from the

electric wall terminating the PML. As Rth becomes smaller,
the numerical reflection from medium interfaces becomes a
more significant part of the total reflection, and the improve-

2’j(;-.)

R. = – zj~:c)
sin * + [b. — “’”;””] Cos * + * [Cos W - Cos v]

(3)
At sin * + [6Z — -] Cos * + * [Cos W + Cos w]
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Fig. 2. Numerical reflection coefficient for a four-cell PML absorber with
the original and t~le revised finite-difference equations.
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Fig. 3. Comparison of numerical reflection coefficients of the original and
the revised schemes for a four-cell PML of different conductivity profiles.

ment by the revised finite-difference scheme is more apparent.
It can be seen From Fig. 3 that for a PML of the same thickness
and the same conductivity profile, the minimum obtainable
reflection coefficient of the revised finite-difference scheme

can be a few orders of magnitude smaller than that of the

original scheme.
Fig. 4 is the reflection coefficient versus the incident angle,

at the frequency corresponding to A = 100 Ah, for a four-
cell PML absorber of constant conductivity profile and the
theoretical reelection coefficient of 10–5. As can be seen,
the best absorption of the revised finite-difference equation
depends on the angle 6’chosen. Even when 9 is chosen to be
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Fig. 4. Numerical reflection coefficient versus incident angle for the originaJ
and the revised schemes. The PML absorber has a constant conductivity profile
and a theoretical reflection coefficient of 10’5.

zero, the improvement on the reduction of numerical reflection

by the revised finite-difference equation appears in a large
range of incident angles.

Numerical tests have also been performed on PML’s for
terminating waveguide structures. Significant reduction in nu-
merical reflection is also achieved with the revised finite-
difference scheme.

IV. CONCLUSION

A new finite-difference scheme for the numericzd imple-
mentation of the PML is developed. With the new algorithm,

the numerical reflection of PML can be significantly reduced,

which leads to more accurate numerical computation and
reduced requirements c~fcomputer resources.
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